Edit Distance#
Given two strings word1 and word2, return the minimum number of operations required to convert word1 to word2.
You have the following three operations permitted on a word:
Insert a character Delete a character Replace a character
Example 1:
Input: word1 = “horse”, word2 = “ros” Output: 3 Explanation: horse -> rorse (replace ‘h’ with ‘r’) rorse -> rose (remove ‘r’) rose -> ros (remove ‘e’) Example 2:
Input: word1 = “intention”, word2 = “execution” Output: 5 Explanation: intention -> inention (remove ‘t’) inention -> enention (replace ‘i’ with ‘e’) enention -> exention (replace ‘n’ with ‘x’) exention -> exection (replace ‘n’ with ‘c’) exection -> execution (insert ‘u’)
class Solution:
def minDistance(self, word1: str, word2: str) -> int:
m = len(word1)
n = len(word2)
# dp[i][j] := min # Of operations to convert word1[0..i) to word2[0..j)
dp = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(1, m + 1):
dp[i][0] = i
for j in range(1, n + 1):
dp[0][j] = j
for i in range(1, m + 1):
for j in range(1, n + 1):
if word1[i - 1] == word2[j - 1]:
dp[i][j] = dp[i - 1][j - 1]
else:
dp[i][j] = min(dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]) + 1
return dp[m][n]
Solution().minDistance('abcd','ab')
2