Climbing Stairs#
You are climbing a staircase. It takes n steps to reach the top. Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
Fibonacci Pattern#
This is a permutation pattern in-comparison to coin change problem 2(takes only combination) Example: Input: n = 3 Output: 3 Explanation: There are three ways to climb to the top.
1 step + 1 step + 1 step
1 step + 2 steps
2 steps + 1 step
Both 2 & 3 permutation are possible - if the question is about no of ways to reach, then go for permutation
Handling base case#
def fib(n):
if n == 0: return 1
if n == 1: return 1
if n == 2: return 2
pass
fib(1)
1
fib(10)
Recursion#
class Solution:
def climbStairs(self, n: int) -> int:
if n == 0: return 1
if n == 1: return 1
if n == 2: return 2
return self.climbStairs(n-1) + self.climbStairs(n-2)
x= Solution()
x.climbStairs(5)
8
Recursion with memoization#
class Solution:
def climbStairs(self, n: int) -> int:
mem = {}
def climb(n):
if n == 0: return 1
if n == 1: return 1
if n == 2: return 2
if n in mem:
return mem[n]
mem[n] = climb(n-1) + climb(n-2)
return mem[n]
return climb(n)
x = Solution()
x.climbStairs(5)
8
DP Solution#
class Solution:
def climbStairs(self, n: int) -> int:
dp = []
dp.append(1)
dp.append(1)
dp.append(2)
for i in range(3,n+1):
dp.append(dp[i-1] + dp[i-2])
return dp[n]
x = Solution()
x.climbStairs(5)
8